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quantifiers in formal
logic

Familiarity with classical quantification theory is presup-
posed here. Some proposed amendments are considered,
as are several additions.

alternatives to classical
quantification theory

First-order logic can be reformulated so as to avoid quan-
tifiers and variables. This is only partially done in modal
logic, which avoids explicit quantification over possible
states of the world in favor of operators ~ and ë. How-
ever, in principle all quantification is avoidable, if one is
willing to admit enough operators and does not worry
about their having ordinary-language readings. In prac-
tice, however, few have preferred this predicate-functor
approach (see Quine 1960, Benthem 1977). Thus, even
such dissidents as the intuitionists adopt the classical
quantificational language, though the properties they
ascribe to the quantifiers are nonclassical. (Thus, while
classically " and ÿÿ" and "ÿÿ are equivalent, intu-
itionistically the first is stronger than the second and the
second stronger than the third.)

Classical logic allows terms formed from constants
and function symbols, subject to the restriction that each
term must denote some element of the domain over
which the quantifiers range; but terms are eliminable
using Bertrand Russell’s theory of descriptions. On the
classical Tarskian definition of truth in a model, truth of
"xf(x) (respectively, $xf(x)) is equivalent to the truth of
f(t) for all (respectively, some) terms t only in special
cases, as when each element of the domain is the denota-
tion of some term of the language (which is never so if
the domain is uncountable and the language countable).
By contrast, the so-called substitutional quantifier �
(respectively, �) is defined by the condition that �xf(x)
(respectively, �xf(x)) always counts as true if and only if

(iff) f(t) is true for all (respectively, some) terms t. There
is no technical obstacle to introducing such operators,
but whether there is any philosophical advantage to doing
so is controversial. In particular, if one has in mind a spe-
cific domain, � (respectively, �) will be intuitively equiv-
alent to the ordinary language “for every (respectively,
some) element of the domain” only in special cases (see
Kripke 1976). Antithetical to substitutional quantifica-
tion is so-called free logic, which drops the classical
restriction that all terms must have denotations and gives
up the classical inferences from "xf(x) to f(t) and from
f(t) to "xf(x) (see Bencivenga 1983).

extensions of classical

quantification theory

In contrast to the various anticlassical logics just men-
tioned, by far the largest body of work on quantifiers in
formal logic concerns certain extraclassical logics, called
model-theoretic logics. These accept classical logic and
the Tarskian definition of truth in a model, but introduce
additional kinds of quantifiers into the language, indicat-
ing their intended meaning by adding clauses for them to
the Tarskian definition. There are several kinds (see Bar-
wise and Feferman 1985).

CARDINALITY QUANTIFIERS. Though there are 
nineteenth-century and even medieval antecedents, the
modern theory of such quantifiers as “most” begins with
Andrzej Mostowski (1957). Given a formula f(x) and a
model with domain A, write f[a] to indicate that a �A
satisfies f(x); also write card B for the cardinality of a set
B. Then the truth conditions for the most studied
Mostowski-style quantifiers are as shown in Table 1.

All these generalized quantifiers count as logical
notions according to the definition of Alfred Tarski
(1986) (which requires that any sentence involving a pur-
portedly logical operator that is true in a model remains
true if the model is replaced by an isomorphic one). Their
theory has been worked out in some detail. For example,
for first-order logic plus Q0 the Löwenheim-Skolem the-
orem holds but the compactness theorem fails, while for
Q1 the opposite is the case.

PLURAL QUANTIFIERS. So-called second-order and
higher-order quantifiers are nowadays generally read as
first-order quantifiers, but with a different domain from
that of the first-order quantifiers. Thus, one writes
“$X(Xy & … )” but reads it as something like “There is a
class X such that y is a member of X and …” or “There is
a concept X such that y falls under X and …” and simi-
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player will win, regardless of how the opponent plays. A
strategy for E can be represented as a pair of functions,
one giving E’s first move as a function of A’s first move,
the other giving E’s second move as a function of A’s first
two moves. Then, (2) asserts that there is a winning strat-
egy for E.

The game interpretation is especially useful if one
wants to consider infinitely long formulas. A sentence like
(1) but with an infinite alternation of quantifiers can be
thought of as describing an infinite game—one may
imagine each move made twice as fast as the one before—
and the assertion that there exists a winning strategy for
E is expressible as an infinitely long second-order sen-
tence like (2) with infinite blocks of existential second-
order and universal first-order quantifiers. There is this
difference, that for a finite game one or the other of the
players must have a winning strategy, but not for infinite
games except in special cases. One such special case is that
where f is a conjunction of formulas f1, f2, … , each
involving only finitely many of the x’s and y’s. This game
quantifier has a tractable theory in this case (see
Moschovakis 1972).

BRANCHING QUANTIFIERS. Henkin (1961) also intro-
duces branching quantifiers and suggests an interpreta-
tion in terms of an associated Skolem form, illustrated by
the following pair:

(3)

(4) $f1$f2f(x1, f(x1), x2, f2(x2))

Note the subtle difference between (4) and (2): In the lat-
ter, f2 is a one-place function. The main result about
Henkin quantifiers is the Enderton-Walkoe theorem,
asserting that not only is every Henkin quantifier sen-
tence equivalent to an existential second-order sentence
but also the converse holds. This means that known
results about the logic of existential second-order sen-
tences immediately apply to the logic of Henkin quanti-
fier sentences: the Löwenheim-Skolem theorem, the
compactness theorem, the definability of truth for sen-
tences of this class by a sentence of the class, and more.

Jaako Hintikka (1996) introduces a nonbranching
notation, in which (3) would be written as follows:

(5) "x1$y1"x2$y2/x1f(x1,y1,x2,y2)

The “/x1” is read “independent of x1.” Hintikka, long an
advocate of a game interpretation of first-order quantifi-

∀x1∃y1

∀x2∃y2

�(x1, y1, x2, y2)
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larly for the two-place “$X(Xyz & … )” and the third-
order “$X(XY & … ),” with relation and class of classes in
place of class.

George S. Boolos (1984) suggests a different reading,
“There are some things, the xs, such that y is one of
them.” Such a reading is available only in the second-
order, one-place case, but there it seems to offer a way of
avoiding overt quantification over classes or concepts.
But it is controversial whether such plural quantification
is prior to such notions as that of class, or whether the use
of the plural involves a covert “ontological commitment”
to something like classes. Boolos argues against the
reduction of plural to class quantification, on the
grounds that “[t]here are some classes such that any class
is one of them iff it is not a member of itself” is true,
while “[t]here is a class of classes such that any class” is
false.

GAME QUANTIFIERS. Any first-order sentence is equiv-
alent to one in prenex form, with all quantifiers out front.
Any first-order prenex is equivalent to an existential 
second-order sentence (quantifying over functions from
and to the domain A of the first-order variables), called
its Skolem form, as with this equivalent pair (where the
alternation of quantifiers may go on for any finite num-
ber n of rounds):

(1) "x1$y1"x2$y2 … f(x1, y1, x2, y2, … )

(2) $f1$f2 … "x1"x2 … f(x1, f(x1), x2, f(x1, x2), … )

Leon Henkin (1961) observes that one can associate to
(1) a game for two players: player A chooses some a1 � A,
player E chooses some b1 � A, A chooses a2, then E
chooses b2, … , and in the end E wins if f[a1, b1, a2, b2, …],
and A if not. A strategy for a player is a rule telling that
player how to play on each move as a function of the
opponent’s previous moves. A winning strategy is one
such that, if the player plays according to it, then the

card {a: �[a]} > card {a: ¬�[a]}

card {a: �[a]} > card {a: �[a]}

card {a: �[a]} infinite

card {a: �[a]} uncountable

card {a: �[a]} = card A

�[a, b] for all distinct a, b ∈I

Truth conditionQuantifier

Mostx (x)�

Morex [�(x), �(x)]

Q0x�(x)

Q1x�(x)

Hx �(x)

Rxy �(x) for some infinite I     A,_⊃

TABLE 1
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cation, also suggests a game interpretation of the new
quantifiers, in terms of a game of imperfect information,
in which at the time of E’s second move, E has available
only information about A’s second move, not about A’s
first move—which is most easily imagined if one thinks
of E as a team, with different members making different
moves and having available different information when
doing so. Hintikka calls the logic with these quantifiers
independence-friendly (or information-friendly) logic
and makes strong and controversial claims about the
philosophical significance of theorems about existential
second-order sentences when restated for “IF” logic (see
Hintikka 1996; compare Tennant 1998; see also Hodges
1997; Burgess 2003).

Which quantifiers considered by logicians have nat-
ural-natural language counterparts, and how close those
counterparts are, is a much discussed question that can-
not be addressed in this entry.

See also Artificial and Natural Languages; First-Order
Logic; Intuitionism and Intuitionistic Logic; Quanti-
fiers in Natural Language; Types, Theory of.
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quantifiers in natural
language

See Appendix, Vol. 10
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See Measurement and Measurement Theory

quantum computing
and teleportation

In the 1980s and 1990s a series of revolutionary develop-
ments in the foundations of quantum mechanics led to
what would later become the thriving fields of quantum
information, quantum computation, and quantum cryp-
tography. The roots of this revolution lie in the debate
between Albert Einstein and Niels Bohr on the interpre-
tation of quantum mechanics, specifically in the notion
of “entangled” quantum states at the heart of the Ein-
stein-Podolsky-Rosen argument for the incompleteness
of quantum mechanics. What Einstein, Podolsky, and
Rosen showed in their 1935 paper “Can Quantum-
Mechanical Description of Physical Reality be Consid-
ered Complete?” was that composite quantum systems,
consisting of spatially separated subsystems, could exist
in certain states with peculiar nonclassical correlations
between the outcomes of measurements on the subsys-
tems. They argued that these correlations are incompati-
ble with the assumption that the quantum state is a
complete description of the system.

In a two-part commentary on the paper, Schrödinger
referred to these states as being “entangled.” Roughly
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