
mation, and capital across national borders makes it
increasingly difficult for contemporary nations to man-
age their own economies. The liability of some states to
the environmental consequences of actions undertaken
by other states and the corporations they house implies
that there are important parts of a state—the quality of
its air and water—that some governments cannot be pre-
sumed control.

Even when states are able significantly to control
their economies or their environmental quality, they may
think it wise to cede a certain amount of control over
their economies, their environments, or the pursuit of
their national security interests to multinational unions
such as NATO and the European Union. Such surrender
of control is a surrender of some of the powers of sover-
eignty. Thus are the increasing importance of non-state
actors, globalization, and the emergence of economic,
political, and military unions all thought to erode the
sovereignty the post-Westphalian model ascribes to
states.

Why question whether states should enjoy the sover-
eignty the post-Westphalian model ascribes to them? The
sovereignty of a state is usually taken to imply that it has
a very strong presumption of control over the natural
resources that lie within its borders. According to this
view, a state can extract, consume, or conserve those
resources as it sees fit. But it is surely open to question
whether states are morally entitled to deplete a resource
the rest of the world needs, to control a river on which
citizens of another state downstream depend, or to exac-
erbate global inequalities of wealth by profiting exces-
sively from a resource it happens to possess. Furthermore,
it is open to question whether states are morally entitled
to control access to its resources and opportunities by for-
bidding or restricting the movement of people across its
borders. So-called “failed states” may lack the capacity to
address humanitarian crises that affect their citizens.
They can also harbor terrorist and criminal organizations
that threaten international order. The incapacities of
failed states, and the dangers they pose, are sometimes
thought to license foreign intervention even if such inter-
vention entails a violation of state sovereignty.

Perhaps the most profound challenge to the post-
Westphalian model is posed by growing international
recognition of human rights. These rights are rights that
people enjoy simply in virtue of their humanity. While
the list and the philosophical foundations of human
rights remains disputed, it is increasingly accepted that
there are such rights, that they limit what governments
may do to their people and that the gross and widespread

violation of such rights by a government may give non-
governmental organizations, other states, and interna-
tional bodies the right to intervene. The easier it is to
defeat the presumption of non-intervention in such
cases, the greater the challenge a global regime of human
rights poses to the post-Westphalian model and to the
forms of sovereignty that model implies. With the rejec-
tion of the post-Westphalian model as descriptively or
normatively inadequate, its displacement by another
model of the political world, or the loosening of its hold
on the imagination of political theorists, sovereignty
would cease to be the central organizing concept it long
has been.

See also Civil Disobedience; Cosmopolitanism; Multicul-
turalism; Postcolonialism; Republicanism
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space

When men began to think about the nature of “space,”
they thought of it as an all-pervading ether or as some
sort of container. Since a thing can move from one part of
space to another, it seemed that there was something, a
place or a part of space, to be distinguished from the
material objects that occupy space. For this reason places
might be thought of as different parts of a very subtle jel-
lylike medium within which material bodies are located.

history of the concept of space

Some of the Pythagoreans seem to have identified empty
space with air. For more special metaphysical reasons Par-
menides and Melissus also denied that there could be
truly empty space. They thought that empty space would
be nothing at all, and it seemed to them a contradiction
to assert that a nothing could exist. On the other hand,
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there seems to be something wrong with treating space as
though it were a material, which, however subtle, would
still itself have to be in space. Democritus and the atom-
ists clearly distinguished between the atoms and the void
that separated them. However, the temptation to think of
space as a material entity persisted, and Lucretius, who
held that space was infinite, nevertheless wrote of space as
though it were a container. Yet he seems to have been
clear on the fact that space is unlike a receptacle in that it
is a pure void. Since material bodies, in his view, consist
of atoms, there must be chinks of empty space even
between the atoms in what appear to be continuous bod-
ies.

Plato’s views on space have to be gotten mainly from
the obscure metaphors of the Timaeus; he, too, appears to
have thought of space as a receptacle and of the matter in
this receptacle as itself mere empty space, limited by geo-
metrical surfaces. If so, he anticipated the view of René
Descartes, where the problem arises of how empty space
can be distinguished from nonempty space. Even if, like
Lucretius and other atomists, we make a distinction
between the atoms and the void, what is this void or
empty space? Is it a thing or not a thing?

ARISTOTLE. Aristotle tried to dodge the difficulty by
treating the concept of space in terms of place, which he
defined as the adjacent boundary of the containing body.
For two things to interchange places exactly, they would
have to be identical in volume and shape. Consider two
exactly similar apples that are interchanged in this way.
The places are not interchanged; rather, the first apple is
now at the very same place at which the second apple was
and vice versa. We seem, therefore, to be back at the
notion of space as a substratum or ether, but it is proba-
ble that Aristotle was trying to avoid this and that he
meant to define place by reference to the cosmos as a
whole. Aristotle thought of the cosmos as a system of
concentric spheres, and the outermost sphere of the cos-
mos would, on his view, define all other places in relation
to itself. In the Aristotelian cosmology each of the various
“elements” tends toward its own place. Thus, heavy bod-
ies tend toward the center of Earth, and fire goes away
from it. This is not, however, for any other reason than
that the center of Earth happens to be the center of the
universe; the places toward which the elements tend are
independent of what particular bodies occupy what
places. In more recent times we view these as two differ-
ent and seemingly irreconcilable ways of thought—the
notions of space as a stuff and of space as a system of rela-
tions between bodies.

DESCARTES AND LEIBNIZ. Descartes held that the
essence of matter is extension, and so, on his view, space
and stuff are identical, for if the essence of matter is to be
extended, then any volume of space must be a portion of
matter, and there can be no such thing as a vacuum. This
raises the question of how we can distinguish one mate-
rial object (in the ordinary sense of these words) from
another. How, on Descartes’s view, can we elucidate such
a statement as that one bit of matter has moved relative to
another one? In what sense, if matter just is extension, can
one part of space be more densely occupied by matter
than another? Descartes considered these objections but
lacked the mathematical concepts necessary to answer
them satisfactorily. We shall see that a reply to these
objections can be made by denying that space is the same
everywhere, and this can be done by introducing the Rie-
mannian concept of a space of variable curvature.

As against Descartes, Gottfried Wilhelm Leibniz held
a relational theory of space, whereby space is in no sense
a stuff or substance but is merely a system of relations in
which indivisible substances, or “monads,” stand to one
another. Few philosophers have followed Leibniz in his
theory of monads, but in a slightly different form the
relational theory of space has continued to rival the
Cartesian, or “absolute,” theory. The issue between the
two theories has by no means been decisively settled, at
least if we consider not space but space-time. It is still
doubtful whether the general theory of relativity can be
stated in such a way that it does not require absolute
space-time.

KANT. In his Prolegomena, Immanuel Kant produced a
curious argument in favor of an absolute theory of space.
Suppose that the universe consisted of only one human
hand. Would it be a left hand or a right hand? According
to Kant it must be one or the other, yet if the relational
theory is correct it cannot be either. The relations
between the parts of a left hand are exactly the same as
those between corresponding parts of a right hand, so if
there were nothing else to introduce an asymmetry, there
could be no distinction between the case of a universe
consisting only of a left hand and that of a universe con-
sisting only of a right hand. Kant, however, begged the
question; in order to define “left” and “right” we need the
notions of clockwise and counterclockwise rotations or of
the bodily asymmetry which is expressed by saying that
one’s heart is on the left side of one’s body. If there were
only one hand in the world, there would be no way of
applying such a concept as left or clockwise. The relation-
ist could therefore quite consistently reply to Kant that if
there were only one thing in the universe, a human hand,
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it could not meaningfully be described as either a right
one or a left one. (The discovery in physics that parity is
not conserved suggests that the universe is not symmetri-
cal with respect to mirror reflection, so there is probably,
in tact, something significant in nature analogous to the
difference between a left and a right hand.)

Later, in his Critique of Pure Reason, Kant argued
against both a naive absolute theory of space and a rela-
tional view. He held that space is something merely sub-
jective (or “phenomenal”) wherein in thought we arrange
nonspatial “things-in-themselves.” He was led to this view
partly by the thought that certain antinomies or contra-
dictions are unavoidable as long as we think of space 
and time as objectively real. However, since the work of
such mathematicians as Karl Theodor Wilhelm Weier-
strass, Augustin-Louis Cauchy, Julius Wilhelm Richard
Dedekind, and Georg Cantor, we possess concepts of the
infinite which should enable us to deal with Kant’s antin-
omies and, indeed, also to resolve the much earlier, yet
more subtle, paradoxes of Zeno of Elea.

newton’s conception of space

Isaac Newton held absolute theories of space and time—
metaphysical views that are strictly irrelevant to his
dynamical theory. What is important in Newtonian
dynamics is not the notion of absolute space but that of
an inertial system. Consider a system of particles acting
on one another with certain forces, such as those of grav-
itational or electrostatic attraction, together with a system
of coordinate axes. This is called an inertial system if the
various accelerations of the particles can be resolved in
such a way that they all occur in pairs whose members are
equal and lie in opposite directions in the same straight
line. Finding an inertial system thus comes down to find-
ing the right set of coordinate axes. This notion of an
inertial system, not the metaphysical notion of absolute
space, is what is essential in Newtonian dynamics, and as
Ernst Mach and others were able to show, we can analyze
the notion of an inertial system from the point of view of
a relational theory of space. Psychologically, no doubt, it
was convenient for Newton to think of inertial axes as
though they were embedded in some sort of ethereal
jelly—absolute space. Nevertheless, much of the charm of
this vanishes when we reflect that, as Newton well knew,
any system of axes that is moving with uniform velocity
relative to some inertial system is also an inertial system.
There is reason to suppose, however, that in postulating
absolute space Newton may have been partly influenced
by theological considerations that go back to Henry More
and, through More, to cabalistic doctrines.

We can remove the metaphysical trappings with
which Newton clothed his idea of an inertial system if we
consider how in mechanics we determine such a system.
But even before we consider how we can define an iner-
tial system of axes, it is interesting to consider how it is
possible for us to define any system of axes and spatial
positions at all. As Émile Borel has remarked, how hard it
would be for a fish, however intelligent, which never per-
ceived the shore or the bottom of the sea to develop a sys-
tem of geometrical concepts. The fish might perceive
other fish in the shoal, for example, but the mutual spa-
tial relations of these would be continually shifting in a
haphazard manner. It is obviously of great assistance to us
to live on the surface of an earth that, if not quite rigid, is
rigid to a first order of approximation. Geometry arose
after a system of land surveying had been developed by
the Egyptians, who every year needed to survey the land
boundaries obliterated by the flooding of the Nile. That
such systems of surveying were possible depended on cer-
tain physical facts, such as the properties of matter (the
nonextensibility of chains, for example) and the rectilin-
ear propagation of light. They also depended on certain
geodetic facts, such as that the tides, which affect even the
solid crust of Earth, were negligible. The snags that arise
when we go beyond a certain order of approximation
were unknown to the Egyptians, who were therefore able
to get started in a fairly simple way.

It might be tempting to say that it was fortunate that
the Egyptians were unaware of these snags, but of course
in their rudimentary state of knowledge they could not
have ascertained these awkward facts anyway. When,
however, we consider geodetic measurements over a wide
area of the globe we need to be more sophisticated. For
example, the exact shape of Earth, which is not quite
spherical, needs to be taken into account. Moreover, in
determining the relative positions of points that are far
apart from one another it is useful to make observations
of the heavenly bodies as seen simultaneously from the
different points. This involves us at once in chronometry.
There is thus a continual feedback from physics and
astronomy. Increasingly accurate geodetic measurements
result in more accurate astronomy and physics, and more
accurate astronomy and physics result in a more accurate
geodesy.

Such a geodetic system of references is, however, by
no means an inertial one. An inertial system is one in
which there are no accelerations of the heavenly bodies
except those which can be accounted for by the mutual
gravitational attractions of these bodies. It follows, there-
fore, that the directions of the fixed stars must not be
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rotating with respect to these axes. In principle we should
be able to determine a set of inertial axes from dynamical
considerations, even if we lived in a dense cloud, as on
Venus, and were unaware of the existence of the fixed
stars. This may have influenced Newton to think of space
as absolute. However, Newton was not on Venus, and he
could see the fixed stars. It is therefore a little surprising
that he did not take the less metaphysical course of sup-
posing an inertial system to be determined by the general
distribution of matter in the universe. This was the line
taken in the nineteenth century by Mach and is referred
to (after Albert Einstein) as Mach’s principle. It is still a
controversial issue in cosmology and general relativity.

Mach’s principle clearly invites, though it does not
compel, a relational theory of space, such as Mach held.
The origin of the axes of an inertial system in Newtonian
mechanics was naturally taken to be the center of gravity
of the solar system, which is nearly, but not quite, at the
center of the sun. In fact, it is continually changing its
position with reference to the center of the sun. Now that
the rotation of the galaxy has been discovered, we have to
consider the sun as moving around a distant center. We
shall here neglect the possibility that our galaxy is accel-
erating relative to other galaxies. In any case, once we pass
to cosmological considerations on this scale we need to
abandon Newtonian theory in favor of the general theory
of relativity.

The philosophical significance of the foregoing dis-
cussion is as follows: When we look to see how inertial
axes are in fact determined we find no need to suppose
any absolute space. Because such a space would be unob-
servable, it could never be of assistance in defining a set
of inertial axes. On the other hand, the complexities in
the determination of inertial axes are such that it is per-
haps psychologically comforting to think of inertial axes,
or rather some one preferred set of such axes, as embed-
ded in an absolute space. But Newton could equally have
taken up the position, later adopted by Mach, that inertial
systems are determined not by absolute space but by the
large-scale distribution of matter in the universe.

space and time in the special
theory of relativity

We have already noticed the dependence of space meas-
urements on time measurements which sometimes
obtains in geodesy. This situation is accentuated in
astronomy because of the finite velocity of light. In order
to determine the position of a heavenly body we have to
make allowance for the fact that we see it in the position
it was in some time ago. For example, an observation of a

star that is ten light-years away is the observation of it in
its position years ago. Indeed, it was the discrepancy
between the predicted and observed times at which
eclipses of the satellites of Jupiter should occur that led
Olaus Rømer to assign a finite, and approximately cor-
rect, value to the velocity of light. The correction of posi-
tion and time on account of the finite velocity of light
presupposes in any particular case our knowing what this
velocity is, relative to Earth. This would seem to depend
not only on the velocity of light relative to absolute space
(or to some preferred set of inertial axes) but also on
Earth’s velocity relative to absolute space (or to the pre-
ferred set of inertial axes). The experiment of Albert
Abraham Michelson and Edward Williams Morley
showed, however, that the velocity of light relative to an
observer is independent of the velocity of the observer.
This led to the special theory of relativity, which brings
space and time into intimate relation with one another.
For present purposes it is necessary to recall only that
according to the special theory of relativity events that are
simultaneous with reference to one inertial set of axes are
not simultaneous with reference to another inertial
frame. The total set of point-instants can be arranged in
a four-dimensional space-time. Observers in different
inertial frames will partition this four-dimensional space-
time into a “space” and a “time,” but they will do so in dif-
ferent ways.

Before proceeding further it is necessary to clear up a
certain ambiguity in the word space. So far in this entry
space has been thought of as a continuant. In this sense of
the word space it is possible for things to continue to
occupy space and to move from one point of space to
another and for regions of space to begin or cease to be
occupied or to stay occupied or unoccupied. Here space
is something that endures through time. On the other
hand, there is a different, timeless use of the word space.
In solid geometry a three-dimensional space is thought of
as timeless. Thus, if a geometer said that a sphere had
changed into a cube, he would no longer be thinking
within the conceptual scheme of solid geometry. In
geometry all verbs must be tenseless. In this tenseless way
let us conceive of a four-dimensional space-time, three of
whose dimensions correspond roughly to the space of
our ordinary thought whereas the other corresponds to
what we ordinarily call time. What we commonly think of
as the state of space at an instant of time is a three-dimen-
sional cross section of this four-dimensional space-time.

Taking one second to be equivalent to 186,300 miles,
which is the distance light travels in that time, any physi-
cal object, such as a man or a star, would be rather like a
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four-dimensional worm—its length in a timelike direc-
tion would be very much greater than its spacelike cross
section. Thinking in terms of space-time, then, two stars
that are in uniform velocity with respect to each other
and also with respect to our frame of reference will
appear as two straight worms, each at a small angle to the
other. An observer on either star will regard himself as at
rest, so he will take his own world line—the line in space-
time along which his star lies—as the time axis. He will
take his space axes as (in a certain sense) perpendicular to
the time axis. It follows that observers on stars that move
relative to one another will slice space-time into spacelike
cross sections at different angles. This makes the relativity
of simultaneity look very plausible and no longer para-
doxical. As Hermann Minkowski observed, the relativity
of simultaneity could almost have been predicted from
considerations of mathematical elegance even before the
experimental observations that led to the special theory
of relativity. Indeed, Minkowski showed that the Lorentz
transformations of the theory of relativity can be under-
stood as simply a rotation of axes in space-time. (In try-
ing to picture such a rotation of axes it is important to
remember that Minkowski space-time is not Euclidean
but semi-Euclidean.) In Minkowski’s words, “Henceforth
space by itself, and time by itself, are doomed to fade away
into mere shadows, and only a kind of union of the two
will preserve an independent reality.” We must not forget
that space-time is a space in the mathematical sense of
the word space, not in the sense in which space is a con-
tinuant. Thus, certain objectionable locutions are often
used in popular expositions. For example, we sometimes
hear it said that a light signal is propagated from one part
of space-time to another. The correct way to put the mat-
ter is to say that the light signal lies (tenselessly) along a
line between these two parts of space-time. Space-time is
not a continuant and is not susceptible of change or of
staying the same.

euclidean and non-euclidean

space

Geometry, as we observed earlier, developed out of expe-
riences of surveying, such as those of the ancient Egyp-
tians. The assumptions underlying the surveying
operations were codified by Greek mathematicians,
whose interests were mainly theoretical. This codification
was developed by Euclid in the form of an axiomatic sys-
tem. Euclid’s presentation of geometry shows a high
degree of sophistication, though it falls considerably
short of modern standards of rigor. Euclid’s geometry
was a metrical one. There are, of course, geometries that

are more abstract than metrical geometry. The most
abstract of all is topology, which deals with those proper-
ties of a space that remain unchanged when the space is
distorted, as by stretching. Thus, from the point of view
of topology a sphere, an ellipsoid, and a parallepiped are
identical with one another and are different from a torus.
Metrical geometry uses a bigger battery of concepts—not
only such notions as those of betweenness and of being
longer than (which itself goes beyond topology) but also
those of being, say, twice or three and a half times as long
as.

Euclid regarded one of his axioms as more doubtful
than the others. This is the axiom that is equivalent to the
so-called axiom of parallels. It will be more convenient to
discuss the axiom of parallels than Euclid’s own axiom.
The axiom of parallels states that if C is a point not on an
infinite straight line AB, then there is one and only one
straight line through C and in the plane of AB that does
not intersect AB. Geometers made many efforts to deduce
the axiom of parallels from the other, more evident ones.
In the seventeenth and eighteenth centuries Gerolamo
Saccheri and J. H. Lambert each tried to prove the axiom
by means of a reductio ad absurdum proof. By assuming
the falsity of the axiom of parallels they hoped to derive a
contradiction. They did not succeed; in fact, Saccheri and
Lambert proved a number of perfectly valid theorems of
non-Euclidean geometry, though they were not bold
enough to assert that this was what they were doing.

János Bolyai and N. I. Lobachevski replaced the
axiom of parallels with the postulate that more than one
parallel can be drawn. The type of geometry that results
is called hyperbolic. Another way to deny the axiom of
parallels is to say that no parallel can be drawn. This yields
elliptic geometry. (Some adjustments have to be made in
the other axioms. For instance, straight lines become
finite, and two points do not necessarily determine a
straight line.) It is easy to prove (by giving a non-Euclid-
ean geometry an interpretation within Euclidean geome-
try) that both hyperbolic and elliptic geometries are
consistent if Euclidean geometry is. (And all can easily be
shown to be consistent if the theory of the real-number
continuum is.) A priori, therefore, there is nothing objec-
tionable about non-Euclidean geometries. Unfortunately,
many philosophers followed Kant in supposing that they
had an intuition that space was Euclidean, and mathe-
maticians had to free themselves from this conservative
climate of opinion.

The question then arose whether our actual space is
Euclidean or non-Euclidean. In order to give sense to this
question we must give a physical interpretation to our
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geometric notions, such as that of a straight line. One way
of defining a straight line is as follows: Suppose that rigid
bodies A, B, C have surfaces SA , SB , SC , such that when A
is applied to B, then SA and SB fit; when B is applied to C,
then SB and SC fit; and when C is applied to A, then SC and
SA fit. Suppose also that SA , SB , SC can all be slid and
twisted over one another—that is, that they are not like
cogged gears, for example. Then SA , SB , SC are all by def-
inition plane surfaces. The intersection of two planes is a
straight line. (In the above we have used the notion of a
rigid body, but this can easily be defined without circu-
larity.) With the above definition of a straight line and the
like we can make measurements to tell whether the angles
of a triangle add up to two right angles. If they make
more than two right angles, space is elliptic; if less than
two right angles, space is hyperbolic; and if exactly two
right angles, space is Euclidean. However, such experi-
ments could not determine the question to any high
degree of accuracy. All that this method shows is that, as
every schoolchild knows, physical space is approximately
Euclidean.

To make measurements that could settle the question
to any high degree of accuracy we should have to make
them on an astronomical scale. On this scale, however, it
is not physically possible to define straight lines by means
of the application of rigid bodies to one another. An obvi-
ous suggestion is that we should define a straight line as
the path of a light ray in empty space. One test of the
geometry of space might then come from observations of
stellar parallax. On the assumption that space is Euclid-
ean, the directions of a not very distant star observed
from two diametrically opposite points on Earth’s jour-
ney round the sun will be at a small but observable angle.
If space is hyperbolic, this angle, which is called the par-
allax, will be somewhat greater. If space is elliptic, the par-
allax will be less or even negative. If we knew the distance
of the star, we could compare the observed parallax with
the theoretical parallax, on various assumptions about
the geometry. But we cannot know the distances of the
stars except from parallax measurements. However, if
space were markedly non-Euclidean, we might get some
hint of this because the distribution of stars in space, cal-
culated from parallax observations on Euclidean assump-
tions, would be an improbable one. Indeed, at the
beginning of the twentieth century Karl Schwarzschild
made a statistical analysis of parallaxes of stars and was
able to assign an upper limit to the extent to which phys-
ical space deviates from the Euclidean.

A good indication that space, on the scale of the solar
system at least, is very nearly Euclidean is the fact that

geometrical calculations based on Euclidean assumptions
are used to make those predictions of the positions of the
planets that have so strongly confirmed Newtonian
mechanics. This consideration points an important
moral, which is that it is impossible to test geometry apart
from physics; we must regard geometry as a part of
physics. In 1903, Jules Henri Poincaré remarked that
Euclidean geometry would never be given up no matter
what the observational evidence was; he thought that the
greater simplicity of Euclidean, as against non-Euclidean,
geometry would ensure our always adopting some physi-
cal hypothesis, such as that light does not always travel in
straight lines, to account for our observations. We shall
not consider whether—and if so, in what sense—non-
Euclidean geometry is necessarily less simple than Euclid-
ean geometry. Let us concede this point to Poincaré. What
he failed to notice was that the greater simplicity of the
geometry might be bought at the expense of the greater
complexity of the physics. The total theory, geometry plus
physics, might be made more simple even though the
geometrical part of it was more complicated. It is ironical
that not many years after Poincaré made his remark
about the relations between geometry and physics he was
proved wrong by the adoption of Einstein’s general the-
ory of relativity, in which overall theoretical simplicity is
achieved by means of a rather complicated space-time
geometry.

In three-dimensional Euclidean space let us have
three mutually perpendicular axes, Ox1, Ox2, Ox3. Let P be
the point with coordinates (x1 , x2 , x3), and let Q be a
nearby point with coordinates (x1 + dx1, x2 + dx2 , x3 +
dx3). Then if ds is the distance PQ, the Pythagorean theo-
rem

ds2 = dx1
2 + dx2

2 + dx3
2

holds. In a “curved,” or non-Euclidean, region of space
this Pythagorean equation has to be replaced by a more
general one. But before considering this let us move to
four dimensions, so that we have an additional axis, Ox4.
This four-dimensional space would be Euclidean if

ds2 = dx1
2 + dx2

2 + dx3
2 + dx4

2.

In the general case

ds2 = g11dx1
2 + g22dx2

2 + g33dx3
2 + g44dx4

2

+ 2g12dx1dx2 + 2g13dx1dx3 + 2g14dx1dx4

+ 2g23dx2dx3 + 2g24dx2dx4 + 2g34dx3dx4.

The g’s are not necessarily constants but may be functions
of x1, x2, x3, x4. That it is impossible to choose a coordi-
nate system such that for a certain region g12, g13, g14, g23,
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g24, g34 are all zero is what is meant by saying that the
region of space in question is curved. That a region of
space is curved can therefore in principle always be ascer-
tained by making physical measurements in that
region—for instance, by testing whether the Pythagorean
theorem holds. There is, therefore, nothing obscure or
metaphysical about the concept of curvature of space.
The space-time of special relativity, it is worth mention-
ing, is semi-Euclidean and of zero curvature. In it we have

g11 = g22 = g33 = – 1, g44 = + 1,

and g12, g13, g14, g23, g24, g34 are all zero.

According to the general theory of relativity, space-
time is curved in the neighborhood of matter. (More pre-
cisely, it has a curvature over and above the very small
curvature that, for cosmological reasons, is postulated for
empty space.) A light wave or any free body, such as a
space satellite, is assumed in the general theory to lie
along a geodesic in space-time. A geodesic is either the
longest or the shortest distance between two points. In
Euclidean plane geometry it is the shortest, whereas in the
geometry of space-time it happens to be the longest.
Owing to the appreciable curvature of space-time near
any heavy body, a light ray that passes near the sun should
appear to us to be slightly bent—that is, there should be
an apparent displacement of the direction of a star whose
light passes very near the sun. During an eclipse of the
sun it is possible to observe stars very near to the sun’s
disk, since the glare of the sun is blacked out by the moon.
In the solar eclipse of 1919, Sir Arthur Stanley Eddington
and his colleagues carried out such an observation that
gave results in good quantitative accord with the predic-
tions of relativity. In a similar way, also, the general the-
ory of relativity accounted for the anomalous motion of
the perihelion of Mercury, the one planetary phenome-
non that had defied Newtonian dynamics. In other cases
the predictions of Newtonian theory and of general rela-
tivity are identical, and general relativity is, on the whole,
important only in cosmology (unlike the special theory,
which has countless verifications and is an indispensable
tool of theoretical physics).

is space absolute or relative?

The theory of relativity certainly forces us to reject an
absolute theory of space, if by this is meant one in which
space is taken as quite separate from time. Observers in
relative motion to one another will take their space and
time axes at different angles to one another; they will, so
to speak, slice space-time at different angles. The special
theory of relativity, at least, is quite consistent with either

an absolute or a relational philosophical account of
space-time, for the fact that space-time can be sliced at
different angles does not imply that it is not something on
its own account.

It might be thought that the general theory of rela-
tivity forces us to a relational theory of space-time, on the
grounds that according to it the curvature of any portion
of space-time is produced by the matter in it. But if any-
thing the reverse would seem to be the case. If we accept
a relational theory of space-time, we have to suppose that
the inertia of any given portion of matter is determined
wholly by the total matter in the universe. Consider a
rotating body. If we suppose it to be fixed and everything
else rotating, then we must say that some distant bodies
are moving with transitional velocities greater than that
of light, contrary to the assumptions of relativity. Hence,
it is hard to avoid the conclusion that the inertia of a body
is partly determined by the local metrical field, not by the
total mass in the universe. But if we think of the local
metrical field as efficacious in this way, we are back to an
absolute theory of space-time. Furthermore, most forms
of general relativity predict that there would be a curva-
ture (and hence a structure) of space-time even if there
were a total absence of matter. Indeed, relativistic cos-
mology often gives a picture of matter as consisting sim-
ply of regions of special curvature of space-time.
(Whether this curvature is the cause of the existence of
matter or whether the occurrence of matter produces the
curvature of space-time is unclear in the general theory
itself.) The variations of curvature of space-time enable
us to rebut the objection to Descartes’s theory that it can-
not differentiate between more and less densely occupied
regions of space.

Nevertheless, there are difficulties about accepting
such a neo-Cartesianism. We must remember that quan-
tum mechanics is essentially a particle physics, and it is
not easy to see how to harmonize it with the field theory
of general relativity. One day we may know whether a
particle theory will have absorbed a geometrical field the-
ory or vice versa. Until this issue is decided we cannot
decide the question whether space (or space-time) is
absolute or relational—in other words, whether particles
are to be thought of as singularities (perhaps like the ends
of J. A. Wheeler’s “wormholes” in a multiply connected
space) or whether space-time is to be understood as a sys-
tem of relations between particles. This issue can be put
neatly if we accept W. V. Quine’s criterion of ontological
commitment. Should our scientific theory quantify over
point-instants of space-time, or should we, on the other
hand, quantify over material particles, classes of them,
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classes of classes of them, and so on? The latter involves a
commitment to particle physics, but if a unified field the-
ory is successful, our ontology may consist simply of
point-instants, classes of them, classes of classes of them,
and so on, and physical objects will be definable in terms
of all of these. So far neither Descartes nor Leibniz has
won an enduring victory.

See also Aristotle; Atomism; Cantor, Georg; Cartesian-
ism; Descartes, René; Eddington, Arthur Stanley; Ein-
stein, Albert; Geometry; Kant, Immanuel; Lambert,
Johann Heinrich; Leibniz, Gottfried Wilhelm; Leucip-
pus and Democritus; Logical Paradoxes; Lucretius;
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Isaac; Parmenides of Elea; Philosophy of Physics; Plato;
Poincaré, Jules Henri; Pythagoras and Pythagoreanism;
Quantum Mechanics; Quine, Willard Van Orman; Rel-
ativity Theory; Time; Zeno of Elea.

B i b l i o g r a p h y
An excellent, mainly historical, account of the philosophy of

space is given in Max Jammer, Concepts of Space
(Cambridge, MA: Harvard University Press, 1954; rev. ed.,
New York, 1960). Ch. 1, “The Concept of Space in
Antiquity,” is particularly valuable as a guide to the very
scattered and obscure references to space in Greek
philosophy. Also useful is John Burnet, Early Greek
Philosophy, 3rd ed. (London: A. and C. Black, 1920). For
Descartes, see his Principles of Philosophy, Part II, Secs. 4–21.
For Leibniz, see especially his correspondence with Clarke,
third paper, Secs. 3–6, and fifth paper, Secs. 32–124. The
Leibniz-Clarke correspondence has been edited, with
introduction and notes, by H. G. Alexander (Manchester,
U.K., 1956). See also Bertrand Russell’s The Philosophy of
Leibniz (London, 1900). Newton’s metaphysical views on
space are to be found in the Scholium to the definitions of
the Principia (Mathematical Principles of Natural Philosophy,
translated by Florian Cajori, Berkeley: University of
California Press, 1934). For Kant’s example of the left hand
and the right hand, see his Prolegomena to Any Future
Metaphysics, translated by P. G. Lucas (Manchester, U.K.,
1953), Sec. 13. Kant’s most characteristic doctrines about
space are to be found in his Critique of Pure Reason, in Secs.
2–7 of the “Transcendental Aesthetic” and in the “First
Antinomy.” In N. Kemp Smith’s translation (London, 1929)
these passages will be found on pp. 67–82 and 396–402. A
criticism of Kant, Zeno, and other philosophers is to be
found in Bertrand Russell’s Our Knowledge of the External
World, Lecture VI, “The Problem of Infinity Considered
Historically” (London: Allen and Unwin, 1914). See also
Adolf Grünbaum, “A Consistent Conception of the
Extended Linear Continuum as an Aggregate of Unextended
Elements,” in Philosophy of Science 19 (1952): 288–306. For
Mach’s criticism of Newton, see especially Secs. 2–6 of his
Science of Mechanics, translated by J. T. McCormack, 6th ed.
(La Salle, IL: Open Court, 1960).

On a fairly elementary level, and although somewhat out of
date in places, Émile Borel, Space and Time (New York:
Dover, 1960)—a translation, by Angelo S. Rappoport and
John Dougall, of the French edition published in 1922—can
be recommended. So can the more difficult Philosophy of
Space and Time, by Hans Reichenbach (New York, 1958),
and Philosophical Problems of Space and Time, by Adolf
Grünbaum (New York: Knopf, 1963). See also Grünbaum’s
paper “Geometry, Chronometry and Empiricism,” in
Minnesota Studies in the Philosophy of Science, edited by
Herbert Feigl and Grover Maxwell, Vol. III (Minneapolis:
University of Minnesota Press, 1962). A criticism of
Grünbaum’s views is given by Hilary Putnam in his paper
“An Examination of Grünbaum’s Philosophy of Geometry,”
in Philosophy of Science, the Delaware Seminar, edited by
Bernard Baumrin, Vol. II (1962–1963; published New York:
Interscience, 1963). Chs. 8 and 9 of Ernest Nagel’s Structure
of Science (New York: Harcourt Brace, 1961) are very useful.
An interesting dialogue by A. S. Eddington, “What Is
Geometry?,” is a prologue to his Space, Time and Gravitation
(Cambridge, U.K.: Cambridge University Press, 1920). On
relativity, see Hermann Minkowski, “Space and Time,” in
The Principle of Relativity, by Albert Einstein, et al. (London:
Methuen, 1923); Hans Reichenbach, “The Philosophical
Significance of Relativity,” and H. P. Robertson, “Geometry
as a Branch of Physics,” both in Albert Einstein: Philosopher-
Scientist, edited by P. A. Schilpp, 2nd ed. (New York: Tudor,
1951); and Adolf Grünbaum, “The Philosophical Retention
of Absolute Space in Einstein’s General Theory of
Relativity,” in Philosophical Review 66 (1957): 525–534 (a
revised version appears in Problems of Space and Time,
edited by J. J. C. Smart, New York: Macmillan, 1963). See
also J. A. Wheeler, “Curved Empty Space-Time as the
Building Material of the Physical World: An Assessment,” in
Logic, Methodology, and Philosophy of Science edited by
Ernest Nagel, Patrick Suppes, and Alfred Tarski (Stanford,
CA: Stanford University Press, 1962), pp. 361–374.

For a discussion of the asymmetry between clockwise and
counterclockwise rotations in relation to the
nonconservation of parity, which has some relevance to
Kant’s problem of the left and right hands, see the brilliant
popular exposition by O. R. Frisch, “Parity Is Not
Conserved, a New Twist to Physics?,” in Universities
Quarterly 11 (1957): 235–244, and the article by Philip
Morrison, “Overthrow of Parity,” in Scientific American 196
(April 1957). For Poincaré’s views, see Science and
Hypothesis (New York: Dover, 1952), especially pp. 72–73. In
connection with the sharpening of the issue between
absolute and relational theories of space and time into an
issue of ontology, see W. V. Quine, Word and Object
(Cambridge, MA: Technology Press of the Massachusetts
Institute of Technology, 1960), especially Sec. 52,
“Geometrical Objects.” A book of readings on space and
time is Problems of Space and Time, edited by J. J. C. Smart
(New York: Macmillan, 1964).

I should like to thank Professor B. C. Rennie, who read an
earlier draft of this entry and made helpful comments.

J. J. C. Smart (1967)

SPACE

ENCYCLOPEDIA OF PHILOSOPHY
2 n d  e d i t i o n • 153

eophil_S2  10/28/05  3:44 PM  Page 153


